MEMODEL VOLATILITAS RETURN SAHAM DENGAN MODEL E-GARCH DAN T-GARCH
Abstract
Penelitian ini bertujuan untuk mengetahui model yang terbaik diantara model T-GARCH (Threshold Generalized Autoregressive Conditional Heteroscedasticity) dan model E-GARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) dalam meramalkan return saham sub sektor perbankan yang terdaftar di Bursa Efek Indonesia. Populasi dalam penelitian ini berjumlah 45 perusahaan perbankan yang terdaftar di Bursa Efek Indonesia (BEI) periode 2014-2018. Sedangkan untuk sampel yang digunakan berjumlah 20 perusahaan. Penelitian ini menggunakan purpossive sampling method dalam menentukan sampel.
Berdasarkan hasil penelitian dan analisis data menggunakan return saham dalam menentukan volatilitas menghasilkan simpulan bahwa model yang terbaik diantara model Threshold Generalized Autoregressive Conditional Heteroscedasticity (T-GARCH) dan model Exponential Generalized Autoregressive Conditional Heteroscedasticity (E-GARCH) dalam meramalkan return saham sub sektor perbankan yang terdaftar di Bursa Efek Indonesia adalah model Exponential GARCH. Hasil penelitian model terbaik tersebut juga diukur dengan salah satu alat ukur akurasi yaitu Root Mean Squared Error (RMSE).
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abdalla, S. Z. S. (2012). Modelling stock returns volatility: Empirical evidence
from Saudi Stock Exchange. International Research Journal of Finance and
Economics, 85, 166–179.
Abiyani, P. & Permadi H. 2013. Peramalan Data Saham S&P 500 Index
Menggunakan Model TARCH. Malang: Universitas Negeri Malang.
Al Freedi, A., Shamiri, A., & Isa, Z. (2011). A study on the behavior of volatility
in Saudi Arabia stock market using symmetric and asymmetric GARCH
models. Journal of Mathematics and Statistics, 8(1), 98–106. DOI:
3844/jmssp.2012.98.108.
Brooks, C. 2008. “Intoductory Econometrics for Finance” (Second ed). USA:
Cambridge University Press.
Firmansyah. 2006. Analisis Volatilitas Harga Kopi Internasional. Jakarta :
Usahawan.
Gujarati, Damodar, 2003, Ekonometri Dasar. Terjemahan: Sumarno Zain, Jakarta:
Erlangga.
Hwang, S. and Satchell, S .2000. “Market Risk and The Concept of Fundamental
Volatility: Measuring Volatility Across Asset and Derivative Markets and
Testing for The Impacts of Derivatives Markets on Financial Markets”.
Journal of Banking and Finance. Volume 24 Page 759-785.
Khoirunnisa, E. (2014). Penerapan Metode ARCH/GARCH pada Pemodelan
Harga Penutupan Saham di Bursa Efek Indonesia Periode 2005-2013.
Lestano, L., & Sucito, J. (2010). Spillover volatilitas pasar saham Indonesia dan
Singapura periode 2001- 2005. Jurnal Akuntansi dan Keuangan, 12(1), 17
DOI: https://doi.org/10.9744/jak.12.1.pp.%2017-25.
Lubrano dan Bauwens, 1998. “Bayesian Inference on GARCH models using the
Gibbs Sampler”, Journal of Econometrics, Vol. 1, hal. C23 – C46.
Maqsood, A., Safdar, S., Shafi, R., & Lelit, N. J. (2017). Modeling stock market
volatility using GARCH models: A case study of Nairobi Securities
Exchange (NSE). Open Journal of Statistics, 7, 369–381. DOI:
4236/ojs.2017.72026.
Miron, D., & Tudor, C. (2010). Asymmetric conditional volatility models:
Empirical estimation and comparison of forecasting accuracy. Romanian
Journal of Economic Forecasting, 13(3), 74–92.
Nelson, D. (1991). Conditional Heteroskedasticity in Asset Returns: A New
Approach, Journal of Econometrics. Vol. 9, No. 5.
Rudolf, Poltak Nainggolan. 2010. ARCH/GARCH Volatility untuk Perhitungan
Value at Risk Tiga Saham Emiten Penghasil CPO.
Satriawan, I Wayan Bagus. (2017). Prediksi Volatilitas Saham Perusahaan
Pertambangan Batu Bara dengan Metode Artificial Neural Networks –
Generalized Autoregressive Conditional Heteroscedasticity. e-Proceeding of
Engineering. Vol.4, Page 5184.
Soedewi, Srie dan Purqon, A. 2015. “Analisis Volatilitas Lima Saham Berbeda
Sektor pada Indeks Kompas100 dengan Metode ARCH-GARCH”. ITB.
Susanti dkk. 2016. Analisis Model Threshold GARCH dan Model Exponential
GARCH Pada Peramalan IHSG. UNNES Journal of Mathematics.
Tsay, R. S. (2005). Analysis of Financial Time Series: Second Edition. Canada: A
John Willey & Sons Inc.
Ullah, Hidayat., Shahab e Saqib., Hazrat Usman. 2015. The Impact of Dividend
Policy on Stock Price Volatility: A Case Study of Selected Firms from
Textile Industry in Pakistan. International Journal of Academic Research in
Economics and Management Sciences, 4(3): 40-51.
Wu, G. (2001). The determinants of asymmetric volatility. The Review of
Financial Studies, 14(3), 837–859. DOI:https://doi.org/10.1093/rfs/14.3.837.
www.idx.co.id. diakses pada tanggal 20 November 2019.
www.yahoo-finance.com. diakses pada tanggal 2 Februari 2020.
Yohanes, S dan Hokky S. 2003. “Sifat Statistika Data Ekonomi Keuangan Studi
Empirik Beberapa Indeks Saham Indonesia”. WPF 2003. Bandung FE
Institute.
Zakoian, M. 2010. GARCH Models : Structure, Statistical Inference and Financial
Applications. English : Wiley.
DOI: https://doi.org/10.32424/jeba.v23i2.1840
Refbacks
- There are currently no refbacks.
View My Stats
Indexed by :
Partnership with Professional Association :