Spatial Analysis Of Forest Deforestation In Indonesia Using Geographically Weighted Panel Regression Method
Abstract
Deforestation refers to the process of removing or significantly reducing the area of forest that results in vegetation cover and forest ecosystems. Deforestation has become a global issue that attracts the attention of many countries around the world, including Indonesia. The purpose of this study is to model Geographically Weighted Panel Regression (GWPR) in the case of forest deforestation in each province in Indonesia. The method used is quantitative with Geographically Weighted Regression (GWR). The data used is secondary data from the BPS Indonesia covering 33 provinces and an annual period from 2014-2021. The result of this study is the GTWR Fixed Gaussian kernel model: Y gaussian = 35495 + 0.07156x1 − 0.43973x2 + 0.71015x3 + 0.23306x4 − 0.59132x5. GTWR Fixed Bisquare kernel model: Y bisquare = −8.43550 − 0.85441x1 − 1.33293x2 + 2.60602x3 + 0.81375x4 − 1.80997x5. The GTWR Fixed Gaussian model is better than the Fixed Bisquare model in modeling Deforestation data in Indonesia in 2014-2021. This research is expected to provide information related to the condition of forest deforestation in Indonesia and what factors affect forest deforestation cases in Indonesia through the GWPR model.
Keywords: [Forest, Indonesia, Geographically Weighted Panel Regression (GWPR)].
Full Text:
PDFReferences
Aziz, G., & Mighri, Z. (2022). Carbon Dioxide Emissions and Forestry in China: A Spatial Panel Data Approach. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912862
Brun, C., Cook, A. R., Lee, J. S. H., Wich, S. A., Koh, L. P., & Carrasco, L. R. (2015). Analysis of deforestation and protected area effectiveness in Indonesia: A comparison of Bayesian spatial models. Global Environmental Change, 31, 285–295. https://doi.org/10.1016/j.gloenvcha.2015.02.004
Busch, J. (2014). What Drives Deforestation and What Stops It? A Meta-Analysis of Spatially Explicit Econometric Studies What Drives Deforestation and What Stops It? A Meta-Analysis of Spatially Explicit Econometric Studies Kalifi Ferretti-Gallon Center for Global Developmentpublication/what-drives-deforestation-and-what-stops-it-meta-analysis-spatially-explicit-econometric. www.cgdev.orgKalifiFerretti-GallonandJonahBuschElectroniccopyavailableat:https://ssrn.com/abstract=2458040Electroniccopyavailableat:https://ssrn.com/abstract=2458040http://www.cgdev.org/
Djaenudin, D., Oktaviani, R., Hartoyo, S., & Dwi Prabowo, H. (2016). An Empirical Analysis of Land-use Change in Indonesia. International Journal of Sciences: Basic and Applied Research (IJSBAR) International Journal of Sciences: Basic and Applied Research, 28(1), 166–179. http://gssrr.org/index.php?journal=JournalOfBasicAndApplied
Fuller, D. O., Meijaard, E. M., Christy, L., & Jessup, T. C. (2010). Spatial assessment of threats to biodiversity within East Kalimantan, Indonesia. Applied Geography, 30(3), 416–425. https://doi.org/10.1016/j.apgeog.2009.11.004
Jagger, P., & Rana, P. (2017). Using publicly available social and spatial data to evaluate progress on REDD+ social safeguards in Indonesia. Environmental Science and Policy, 76, 59–69. https://doi.org/10.1016/j.envsci.2017.06.006
Kustanto, A. (2022). Does Trade Openness Cause Deforestation? A Case Study from Indonesia. Jurnal Ekonomi Pembangunan, 19(2), 165–182. https://doi.org/10.29259/jep.v19i2.15530
Leijten, F., Sim, S., King, H., & Verburg, P. H. (2021). Local deforestation spillovers induced by forest moratoria: Evidence from Indonesia. Land Use Policy, 109. https://doi.org/10.1016/j.landusepol.2021.105690
Melati, D. N. (n.d.). SPATIO-TEMPORAL DATA MODELING IN RESPONSE TO DEFORESTATION MONITORING (A CASE STUDY OF SMALL REGION IN RIAU PROVINCE, INDONESIA).
Noor, T. I., Sulistyowati, L., Yudha, E. P., Setiawan, M. A., Syakirotin, M., Wicaksono, S. L., & Suardi, T. F. (2024). Effect of disaster events on regional food security spatially: A geographically weighted regression model. International Journal of Data and Network Science, 8(3), 1625–1634. https://doi.org/10.5267/j.ijdns.2024.3.004
Olchev, A., Ibrom, A., Priess, J., Erasmi, S., Leemhuis, C., Twele, A., Radler, K., Kreilein, H., Panferov, O., & Gravenhorst, G. (2008). Effects of land-use changes on evapotranspiration of tropical rain forest margin area in Central Sulawesi (Indonesia): Modelling study with a regional SVAT model. Ecological Modelling, 212(1–2), 131–137. https://doi.org/10.1016/j.ecolmodel.2007.10.022
Propastin, P. (2012). Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 18(1), 82–90. https://doi.org/10.1016/j.jag.2011.12.013
Sakti, A. D., Fauzi, A. I., Takeuchi, W., Pradhan, B., Yarime, M., Vega-Garcia, C., Agustina, E., Wibisono, D., Anggraini, T. S., Theodora, M. O., Ramadhanti, D., Muhammad, M. F., Aufaristama, M., Perdana, A. M. P., & Wikantika, K. (2022). Spatial Prioritization for Wildfire Mitigation by Integrating Heterogeneous Spatial Data: A New Multi-Dimensional Approach for Tropical Rainforests. Remote Sensing, 14(3). https://doi.org/10.3390/rs14030543
Saputri, D. T., & Pratama, A. A. (n.d.). Spatial Panel Data Approach on Environmental Quality in Indonesia.
Shah, P., & Baylis, K. (2015). Evaluating heterogeneous conservation effects of forest protection in Indonesia. PLoS ONE, 10(6). https://doi.org/10.1371/journal.pone.0124872
Sheng, J., Han, X., & Zhou, H. (2017). Spatially varying patterns of afforestation/reforestation and socio-economic factors in China: a geographically weighted regression approach. Journal of Cleaner Production, 153, 362–371. https://doi.org/10.1016/j.jclepro.2016.06.055
Wheeler, D., Hammer, D., Kraft, R., Dasgupta, S., & Blankespoor, B. (2011). Economic Dynamics and Forest Clearing A Spatial Econometric Analysis for Indonesia. www.cgdev.org
Wheeler, D., Hammer, D., Kraft, R., Dasgupta, S., & Blankespoor, B. (2013). Economic dynamics and forest clearing: A spatial econometric analysis for Indonesia. Ecological Economics, 85, 85–96. https://doi.org/10.1016/j.ecolecon.2012.11.005
Refbacks
- There are currently no refbacks.