Forecasting of Inflation Rates Based on Macroeconomics Factors Using Adaptive Neuro-Fuzzy Inference System (ANFIS) Methods

Supriyanto Supriyanto, Wiwiek Rabiatul Adawiyah, Arintoko Arintoko

Abstract


Inflation stability becomes very important because it relates to the economic growth that will have an impact on improving the welfare of society. Therefore, controlling inflation will prevent a high and an unstable inflation that gives negative impact on the economic conditions. This study aims to develop appropriate models for inflation forecasting. The approaches used is ANFIS. Based on the results obtained, using the data of general inflation and inflationary spending seven groups period 2010-2022, showed that the ANFIS model that has been obtained shows that by using two membership functions, to model general inflation, it is generated by the transfer function model with the input money supply, one month before Eid Al-Fitr, the month when there is Eid al-Fitr, and the increase in fuel prices as influential variables.

Keywords: ANFIS; inflation; forecasting; macroeconomic.

Full Text:

PDF

References


Al Makhrus, M. N., & Priyadi, U. (2022). Determinan faktor-faktor inflasi di Indonesia tahun 1990-2020. Jurnal Kebijakan Ekonomi Dan Keuangan, 1(1), 101–110. https://doi.org/10.20885/jkek.vol1.iss1.art10

Dwihapsari, R., Kurniaputri, M. R., & Huda, N. (2021). Analisis Efektivitas Kebijakan Moneter Dalam Perspektif Konvensional dan Syariah Terhadap Inflasi di Indonesia Tahun 2013-2020. Jurnal Ilmiah Ekonomi Islam, 7(2), 980–993. https://doi.org/10.29040/jiei.v7i2.2368

Fariza A, Helen A, dan Rasyid A, 2007, “Performansi Neuro Fuzzy untuk Peramalan Data Time Series”, SNATI 2007.

Fatkhurrozi, B., Muslim, M. A. & Santoso, D. R., 2012. Penggunaan Artificial Neuro Fuzzy Inference System (ANFIS) dalam Penentuan Status Aktivitas Gunung Merapi. Jurnal EECCIS, VI(2), pp. 113-118

Islamiyah, S. (2013). Penerapan Autoregressive Distributed Lag (ARDL) dalam memodelkan pengaruh harga minyak dunia dan jumlah uang beredar terhadap inflasi di Indonesia. Malang: Universitas Brawijaya

Jumiati, E. (2022). Kebijakan Moneter Sebagai Pengendali Inflasi Dan Nilai Tukar (Peran Bank Sentral). 2(1), 1–14

Karomah, A. (2014). Peramalan netflow uang kartal dengan model variasi kalender dan model Autoregressive Distributed Lag (ARDL). Surabaya: ITS

Kusumadewi, S. 2002. Analisis dan desain sistem fuzzy menggunakan tollbox matlab. Yogyakarta: Graha Ilmu

Luwihadi, N. L. A., & Arka, S. (2017). Determinan Jumlah Uang Beredar dan Tingkat Inflasi di Indonesia Periode 1984-2014. In Fakultas Ekonomi dan Bisnis (Vol. 6, Issue 4)

Maurice. (2013). Determining the better approach for short-term forecasting of Ghana’s inflation: seasonal-ARIMA vs Holt117 Winters. International Journal of Business, Humanities and Technology, 3 (1)

Nakamura, E. (2005). Inflation forecasting using a Neural Network. Economic Letter, 86, 373-378

Nasution, M. R., Ruslan, D., and Tanjung, A. A. (2021). Peramalan Inflasi Di Indonesia: Dynamic Model Average. Media Ekonomi, 28(2), 91–98. https://doi.org/10.25105/me.v28i2.7085

Ningsih, D., & Andiny, P. (2018). Analisis Pengaruh Inflasi dan Pertumbuhan Ekonomi Terhadap Kemiskinan di Indonesia (Vol. 2, Issue 1).

Setyaningsih, D. (2010). Penerapan model intervensi, variasi kalender, dan deteksi outlier untuk penentuan mean model pada data inflasi beberapa kota besar di Jawa. Surabaya: ITS

Suharsono, A. (2012). Vector Autoregressive modelling for inflation data in Indonesia. Journal of Basic and Applied Scientific Research. 2 (1), 1-4

Taib, T.F., dan Ibrahim, 2012. Adaptive Neuro Fuzzy Infrerence System for Diagnosis Risk in Dengue Patients. Expert System With Aplication 39, pp. 4483-4495

Widiarsih, D., & Romanda, R. (2020). Analisis Faktor-Faktor yang Mempengaruhi Inflasi di Indonesia Tahun 2015-2019 dengan Pendekatan Error Corection Model (ECM). Jurnal Akuntansi Dan Ekonomika, 10(1), 119–128. https://doi.org/10.37859/jae.v10i1.1917

Wijayanto. (2012). Peramalan nilai kontrak konstruksi PT Waskita Karya Jakarta dengan menggunakan pendekatan regresi time series dan ANFIS. Surabaya: ITS


Refbacks

  • There are currently no refbacks.