Analysis of Human Development Index In Sumatera Barat Province Using Biplot Method

Eri Mardison

Abstract


The Human Development Index (HDI) is calculated from four variables, however, the HDI value cannot directly show which variables are superior in an area and which are not. For this reason, this study aims to analyze the strength of the HDI variables in each region in Sumatera Barat Province, using Biplot Analysis. Important findings resulted from biplot analysis indicate that the Sumatera Barat Province is categorized into five regional groups that are affected by the proximity value of its constituent variables. Out of the five groups, two groups are in an area not adjacent to the variable. The other two groups are in the variable area. While the last group is an extreme region compared to other regional groups. Areas that are not in the area of variables are weak against variables, while the area falling in the variable area is superior in the relevant variable. For extreme groups, Kota Padang is very superior in the adjusted per capita expenditure variable and superior in other variables too. Meanwhile, the Mentawai Islands Regency is very weak in all variables. Kota Padang Panjang is very superior in all variables of education but weak in the economic variable. The Biplot Analysis also revealed that Sijunjung Regency had a fairly good in expenditure, but it was not good enough in other dimensions of the HDI. Things like this are not given enough attention to ordinary HDI analysis, this is what makes the Biplot analysis important to do.


Full Text:

PDF

References


BPS, BPS.(2019). Indek Pembangunan Manusia. Jakarta: Badan Pusat Statistik.

Junian, R., Kusnandar, D., & Sulistianingsih, E. (2018). Analisis Indeks Pembangunan Manusia Di Kalimantan Barat Dengan Regresi Panel Dan Biplot. Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), 07(03), 177 – 184.

Hatidja, D., & Momuat, L., (2017). Penggunaan Analisis Biplot Untuk Memetakkan Sekolah Dasar Di Kabupaten Minahasa Tenggara Berdasarkan Indikator Stándar Nasional Pendidikan. D’cartesian:Jurnal Matematika dan Aplikasi. 6(2),96-108.

Leleury, Z., & Wokanubun, A., (2015). Analisis Biplot pada Pemetaan Karakteristik Kemiskinan di Provinsi Maluku. Jurnal Ilmu Matematika dan Terapan.9(1),21-31.

Prasetyoningrum, A., & Sukmawati, S. (2018). Analisis Pengaruh Indeks Pembangunan Manusia (IPM), Pertumbuhan Ekonomi dan Pengangguran Terhadap Kemiskinan di Indonesia. Equilibrium: Jurnal Ekonomi Syariah, 6(2), 217-240.

Sholihin, I., Mustafid, & Safitri, D. (2014). Faktor Konfrimatoristragegi Positioning Pasar Modern Indomaret. (Studi Kasus Wilayah Tembalang Kota Semarang). Jurnal gaussian, 3(3), 431–440.

Tinungki, G. (2018). AccuracyLevel OfBiplot Analysis Based On The Variance-Covariance Matrix. American Journal of Engineering Research. 7(5),264-271.




DOI: https://doi.org/10.20884/1.erjpe.2020.15.1.1442

Refbacks

  • There are currently no refbacks.


 

Print ISSN : 1907-6827   Online ISSN : 2620-8849

Indexed by :

        

 

Partnership with Professional Association: